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Two inequalities are proposed for the purpose of bounding from below the mean 
shear Ui(z )  in turbulent channel flow. The first of these inequalities pertains to the 
energetics of the boundary layer, and the second pertains to  the logarithmic form of 
the asymptote to U,. These inequalities imply a maximum value of von K6rmAn’s 
constant, the numerical value of which lies between the measurements of Laufer 
(1951) and the value obtained from bulk discharge measurements in a pipe. The 
formalism, which contains no adjustable parameters, is then applied to  the turbulent 
thermal convection problem, and a lower bound for the mean temperature Fo(z) is 
obtained. The minimum value of the latter a t  large distances from the boundary is 
in fair agreement with Townsend’s (1959) measurements. Although the proposed 
inequalities have not been deduced from the equations of motion, they provide facts 
which may be useful in the search for new variational formulations of the turbulent 
transport problem. 

1. Introduction 
Figure 1 shows a wide rectangular channel of height D and length L which is con- 

nected t o  an infinite reservoir which is filled to  a given level (head) with a liquid of 
density p and viscosity u (cm2/s). When L -+ co a laminar Poiseulle flow is realized, 
when L -+ 0 a free Bernoulli discharge is realized, and the turbulent regime of pre- 
sent interest occurs when L is large (but finite) and when the overall Reynolds number 
d D / u  is very large. I n  the statistically steady state the mean wall stress 7 (cm2/s2) 
is obtained, according to  the momentum principle, by multiplying the pressure head 
in the reservoir and D/2pL. The horizontally averaged U(z) in the centre of the 
channel is symmetric and satisfies the boundary conditions 

U(0) = 0, ( 1 . 1 )  

U’(0) = 7 / u  (1.2) 

at  the bottom z = 0. A fundamental problem is to determine the discharge 

Q = 2 /o“’ U d z  = 2 /o’BdzU’(~) [+D-z] 

and the velocity profile. 
I -  

Malkus (1956) suggested that for a given T the observed mean flow L‘,(z) has a 
smaller value of Q than any other statistically steady solution of the Navier-Stokes 
equations, the idea being that these solutions are non-unique and densely degenerate. 
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FIGURE 1. Schematic diagram for turbulent channel flow. 

Malkus also had to introduce other controversial ideas for the constraints, one of 
these being the assumption that the (formal) substitution of U,(z) into the Orr- 
Sommerfeld equation would yield positive growth rates for some of the normal modes. 
Subsequent calculations by Reynolds & Tiedermann (1967)' Gol'dshtik (1969), and 
others indicate that this assumption is not correct. The purpose of this investigation 
is to elucidate a set of constraints which are consistent with observations, and which 
can be used to test such variational principles as suggested by Malkus. 

The proposed constraints are inequalities pertaining to the mean field, a relatively 
simple example of which is the well known fact that the curvature is negative, or 

U"(z)  < 0. (1.4) 

[There is no satisfactory dynamical explanation for this, and other types of turbulent 
flow (e.g. a free jet) do exhibit inflexion points.] The question arises as to whether 
other heuristic inequalities having more dynamical content can be elucidated, and 
for this purpose the following guidelines will be adopted. The rules for formulating 
the inequalities must be correct statements of fact which have some physical basis, 
so that it may be possible to generalize them to other turbulence problems (e.g. $5) 
without recourse to an experimental adjustment of parameters. The formalism will 
be inferred from plausible dynamical ideas, and the implications of the inequalities 
will then be compared with observations. No attempt is made in this paper to deduce 
the inequalities from the equations of motion. 

The first inequality ( $ 2 )  is a quantitative statement of the idea that the region of 
large shear near the wall is such that some two dimensional 'test perturbation' in 
the boundary layer is capable of releasing more energy than it dissipates. The plausible 
functional inequality (2.3) used to express this idea is phrased in the language of Orr 
(1907), and is verified by comparing its consequences with Laufer's (1954) measure- 
ments of U, near the wall. The new functional inequality, together with (1.1)-(1.4)) 
describes a large class of shear profiles U'( z ) ,  one of which is the observed U &  and 
therefore the minimum of (1.3) gives a lower bound on the realized discharge. 

The 'optimal' U for this first variational problem has no shear in the region beyond 
the wall boundary layer, whereas the observed U, has the well-known logarithmic 
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boundary layer as described by von Karmin’s constant K .  Thus we proceed to a 
second inequality which will further restrict our class of U to  those having a logarithmic 
asymptote with a bounded value of K .  The inequalities (3.2) used for this purpose 
lead to  a manifold of U’, the envelope of which is assumed to bound the observed 
shear. The validity of this second assumption depends on the maximum value of K 
in the manifold, and comparison of theory and experiment is given in 5 4. 

I n  order to demonstrate that  the foregoing inequalities represent more than an 
exotic form of curve fitting, we have applied them without ‘adjustment ’ ( 5  5) to  the 
problem of thermal turbulence (BBnard convection) a t  very high Rayleigh number. 
Here we have a thermal boundary layer and the straightforward generalization of 
our inequalities is shown to be consistent with the measurements by Townsend (1959) 
and Deardorff & Willis (1967). This first inequality provides a lower bound for the 
mean temperature gradient ph(z) for a given heat flux. The second inequality is re- 
lated to the similarity law (Malkus 1963; Townsend 1959) for Po cc z-l a t  large dis- 
tances from the lower boundary. The present theory gives a bound for the coefficient 
in this 2-1 law which is in agreement with Townsend’s measurement. 

There are other approaches to  the bounding problem, in which one uses only such 
constraints as are deducible from the equations of motion (Howard 1972). I n  the 
shear flow problem, for example, the main constraint is the mechanical energy 
integral s:”- (1.5) 

to - 
u I0 (V x Vo)2dz  = - uowo U;(z)dz ,  

where V, = [uo, vo, wo(x, y, z ,  t ) ]  are the (x, y, z )  components of fluctuating velocity, and 
a bar indicates a horizontal average. For the thermal convection problem there are 
two relevant energy integrals, 

and 

where Fo(z) is the horizontally averaged temperature. &(x, y, z, t )  is the fluctuating 
temperature, CL is the thermal expansion coefficient, k is the thermal diffusivity, and 
D is the vertical separation between the two perfectly conducting boundaries. The 
rigorous bounds for the heat flux F = --kTh(O), and for Q,  obtained by this kind of 
an approach are interesting, but obviously limited by the amount of information 
introduced. 

2. An inequality pertaining to the energetics of the turbulent boundary 
layer 

Our object is t o  construct a class of shear profiles U’(z)  which bound the observed 
profile U&) from below, and attention is naturally directed to the broken line which 
is drawn in figure 2 (a ) .  This is constructed by drawing the tangent to the shear profile 
from the point ( 0 , 7 / u ) .  The abscissa of the tangent point, denoted by zl( U’) ,  is ob- 
viously a function of the profile U‘, and we let zl0(U;) denote the tangent point for 
the observed profile. The point of intersection of the tangent with the z axis is denoted 
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t 
max K 

FIGURE 2. (a)  Sketch of the mean shear U’(z) as a function of distance from the boundary. 
The dashed line is tangential to the curve at  z = zl. (a) Sketch of the mean temperature gradient 
in turbulent thermal convection. (c) Geometrical meaning of _the similarity inequality (3.9). 
The ordinate for these curves is the inverse shear function K(z )  [dU(z)  7 d / d  In Z7b-1]-1 .  

The solid curve is a sketch of the observed &(U,(Z)), the minimum point of which corresponds 
to the inflexion point in the plot of U, as a ‘function of In z. The broken curve R ( U ( z ) ) ,  which 
has a constant value for z greater than z I  < zl(U’), corresponds to a member U’ of the M, 
manifold which bounds Ug from below. 

by zb (u’ ) ,  and we let zbo = zb(Uh) denote the observed value of the boundary-layer 
width. The ‘comparison profile’ for Uh(z) is defined as that broken line curve (figure 
2a)  whose equation is: 

(2.1) >. z / zbO)  r/v? z < ZbO 
U&) = 1‘L- 

0, D-zbO 2 z 2 ZbO 

The thickness zbo of the boundary layer in (2.1) is obviously a well defined scale length 
of the observed profile U;. We also note that since U$(z)  < Uh(z), (1 .1)  implies 

The dynamical significance of the foregoing construction emerges from a considera- 
tion of (1.5), the right-hand side of which represents the generation of turbulent 
energy by the working of the Reynolds stress on the shear of the mean field. The left- 
hand side of (1.5) represents the equal amount of dissipation of the perturbation. 

uoc(~, Uo(Z,. 
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There are obviously many more perturbation fields besides the observed V,, such that 
UL(z) will satisfy the same integral relation. If there exists any two dimensional 
velocity perturbations such that (1.5) can be satisfied, then we shall say that the given 
mean field U, is ‘unstable in the sense of Orr (1907) ’. This language, and some of the 
mathematical results of Orr will be found useful in formulating an inequality for the 
fully turbulent U,. Otherwise there is no assumed connexjon with Orr’s problem, 
which is concerned with estimating when a laminar Poiseuille flow and a linear 
Couette flow becomes unstable. For each of these two laminar problems Orr computed 
the smallest possible value of the Reynolds number such that some two dimensional 
velocity perturbation would instantaneously generate more energy from the shear 
flow than that perturbation dissipates. I n  our turbulent proble n reference is made to 
the observed mean flow, and (1.5) implies that  there certainly are three dimensional 
test perturbations which are unstable in the sense of Orr. It is also a fact that  there 
exist two dimensional ‘test perturbations’ which are unstable in the sense of Orr, 
because the overall Reynolds number is very large and because of the observed loga- 
rithmic shape of the boundary layer. Although this point is not necessary for the 
following development, a proof is given in appendix C. 

Since the region of large UA near the wall is of crucial importance in the generation 
of turbulent kinetic energy, we now make the plausible assumption that the comparison 
profile (2.1) is also unstable in the sense of Orr. This means that there exists a two 
dimensional test perturbation 

v, = (uc, 0, w,) = ( - a$/az, 0, a@/ax) (2.2) 

which generates as much energy from U;, as that perturbation dissipates, j.e. 

4” ~ 

v ~ l ” ( v x v c ) 2 d z  v / ~ ( O d z + + j - b ”  (V x Vc)2dz 
(2.3) - - 0 1 =  

ZbO ~ 

- U, W ,  U& dz 
1 0  

- s,”” U&dz 

We shall require that the test perturbation (2.2) satisfies the no-slip boundary condi- 
tions a t  z = 0, and we stipulate that  V, va,nishes a t  large distances z 9 zbo from the 
boundary layer. We will also require that the test perturbation have zero stress in 
the region where Ui,(z) = 0, i.e. u,w, = 0 for z 2 zbo. Furthermore (u,,~,) will be 
continuous across zbo, and will be negatively correlated where U;, > 0. No other 
conditions will be placed on V,, and it is emphasized that the introduction of this 
two dimensional ‘test perturbation’ does not mean that the turbulence is assumed 
t o  be two dimensional. Although U,, and V,, are formal constructions, the physical 
content of the assumption (2.3) will emerge from the fact that zbo is a real and physically 
observable quantity. We shall see that (2.3) implies that the boundary layer Reynolds 
number cannot be ‘too small’; for otherwise (2.3) could not be satisfied because the 
numerator on the right-hand side of (2.3) would exceed the denominator for all 
possible values of the ‘dummy variable’ V,. 

It is obvious that for a given zbO the right-hand side of (2.3) can be made as large 
as we please by merely increasing the horizontal wave number of V,. Therefore the 
truth of (2.3) can be established by merely exhibiting one function Vc(x, z )  which 
makes the right-hand side of (2.3) less than unity, when the observed value zbo is used. 

- 
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The demonstration of this fact is deferred to appendix A, so as not to interfere with 
the development of the argument, and the consequences are as follows. 

Since the last term in the numerator of (2.3) is positive, it follows that if (2.3) is 
correct then there must also exist a V ,  (different from the previous one) such that 

Y f Z b O  (V x V,)"z 

and 

U,(Z, 0) = W,(Z, 0) = 0, ( 2 . 4 ~ )  

(2.4 b)  

( 2 . 4 ~ )  

where ( 2 . 4 ~ - c )  are the boundary conditions previously stated. Next we note that 
for any V, the replacement of U& by UA > U& lowers the value right-hand side of 
(2.4), and thus it follows that there must exist some V ,  (different from the previous 
ones) which will satisfy 

v IoZbo (V x VJ2 dx 
1 =  (2.5) 

( - u,w,) UAdz 
/ozao - 

Next, we replace Uh by any function U' satisfying (1. l),  (1.2) and (1.4); and we replace 
zbo by the zb( u') obtained from this U' by means of the tangent construction (figure 2a) .  
This yields a manifold Ml( U ' )  of profiles which satisfy ( 2 . 4 ~ - c )  and 

v [ z b ( V  x Vc)2dz 
J O  1 =  IOzb ( - u x )  U'(z)  dz 

with one of the members of the manifold being U;. It then follows that the observed 
discharge Q0 must be greater than that computed from the minimum value of (1.4), or 

Q0 > 2 min IoZ' U'(z )  [QD - 23 dz. (2.7) 
M ,  

The implications of the foregoing become clearer if we introduce the streamfunction 
(2.2) for V,, and make the result non-dimensional by using zb ,  &s the unit of length and 
T / V  as the unit of shear, i.e. let 

s(C) = (T /v ) - l  u'(z), 5 = z / z b ,  '$ = x / z b ,  c1 = zl/zb; (2.8) 

where Cl is the non-dimensional abscissa of the tangent point. Thus (2.6) becomes 

1- 

( V 2 W  d5 

& @ p ( C )  dC 
= 1.  (2.9) 

- v2 l o  
1- 
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The constraints on the non-dimensional shear profile are 

s (0 )  = 1, S(C1) = 1 -cl, s‘(51) = - 1,  s’(5) < 0, (2.10) 

1 - 5 <  s(6)  < 1; (2.11) 

and the boundary conditions become: 

(2.14) 

When (2.7) is made non-dimensional, and when the small term of order v/dD < 1 
is discarded we get 

(2.15) 

- -  
where (2.9) has been used to eliminate zb. 

The mathematical results obtained by Orr (1907) imply that the right-hand side 
of (2.15) is a definite number, the calculation of which is relegated to appendix A, 
so as not to distract from the line of argumentation. The value of the right-hand side 
of (2.15) corresponds to  a particular ‘drag coeEcient ’, and the optimizing U is found 
to give zero shear for z 2 zb. This optimal U‘ having zero shear is one of the members 
of a manifold MI( U’)  of profiles, the lower envelope U;,(z) of which is guaranteed to 
bound the observed Uh a t  all z. 

We now recognize that this ‘optimal ’ U is unrealistic and physically inconsistent 
(momentum-wise) with the downstream pressure gradient which exists a t  all z in 
the channel. Therefore another constraint will be added to  remove those profiles 
having this unrealistic region of zero shear above the boundary layer. 

3. Similarity inequality 
The most general and best established similarity assumption for turbulent channel 

and pipe flow is the law of the wall, which states that  if z, v and the pressure gradient 
are held constant, then as D -+ co, Uo(z) approaches a finite limit profile Uow(z). The law 
of the wall does not apply to  the ‘defect region’ z/D = O ( l ) ,  and as D -+ 00 the maxi- 
mum velocity Uo(gD) increases without bound. For reasons of continuity it then 
follows that 

must also increase without bound when we let z --f co in the law of the wall. This 
means that Uhw must be sufficiently large so that the integral in (3.0) diverges as 
z + 00. Thus the asymptotic UAw must exceed (for example) a constant multiple of 
the function z - l ( l n ~ d v - ~ ) - ~  since the integral of this function converges a t  z -+ co. 
One could therefore impose this function as a bound on U d ,  a t  z -+ m, but for obvious 
empirical reasons we want t o  introduce a slightly stronger form of constraint which 
will give us the well known logarithmic law. We therefore make the further similarity 
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assumption that the ratio of the shear (or any higher derivative) a t  z to the shear at  
az depends only on a and not on z (provided a = O(1) and d z / v  % 1) .  This functional 
relation, when differentiated with respect to z, implies a power law form for U&,az-Y 
with the exponent y being independent of z. By substituting this power law into (3.0), 
and by requiring the latter integral to diverge we obtain the inequality y < 1.  Thus 
Uiw must be bounded below a t  z -+ 00 by a curve which is proportional to z-l, and 
Uow(z) must increase at  least as rapidly as In z.  

The logarithmic constraint on the new manifold will be introduced by requiring 
the class of velocity profiles in (2.6) to satisfy 

and the central problem is what to do about the parameter zl. Without introducing 
any additional constraints or experimentally adjustable parameters, we will consider 
each of the three possibilities: 

z, 2 za( U')  or z b  > zl > z1 or 0 < zl < zl( U ' ) .  (3.2) 

Each of these inequalities, together with (3.1) and the previous conditions on MI, 
specifies a new submanifold of profiles U',  and in the absence of sufficient reason to 
the contrary, we assume that the envelope of each bounds the observed U d ,  from 
below. In order to verify this major assumption we will compare the envelope for 
each of the three problems with the observed Uhw. 

If K denotes the constant of integration for (3.1), then 

78 
U(z) = - 

KZ 

and by using (2.8) this can be written in the non-dimensional form 

and 

When (3.4) is evaluated at  6, and when (2.9) is used to eliminate Zb we get 

(3.3) 

A t  this point we may note that the profiles in MI ( 3  2) are really degenerate members 
of (3.3) which correspond to the values K = 00 and z, = zb. Therefore attention is 
directed to the question as to whether (3.6) has a finite maximum. 

Consider the first inequality in (3.2), i.e. & 2 1.  The only constraints (2.10) on s(5)  
apply to the interval 5 < 1, and thus i t  is clear that a(&) may be made as small as we 
please. Thus (3.6) has no upper bound for this submanifold, and the latter has an 
envelope which is identical to that which wa.s found for Ml in 3 2. Therefore the assump- 
tion made following (3.2) is trivially correct for the case z, 2 zb. 
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6 1 and (3.4) implies cls(c1) = s(1). Therefore (3.6) In  the remaining two cases 
becomes 

(3.7) 

Now consider the second inequality in (3.2), i.e. 1 2 > 5,. In  this case we may 
still let s(1) + 0 with Q -+ 1 and Cl -+ 1, and thus we conclude that K also has no 
finite limit for the second submanifold, the envelope of which is also l&. We see that 
these two submanifolds really introduce no new information, and the desired finite 
logarithmic profile is 'not enforceable' by such weak inequalities as we are using. 

Now consider the last inequality in (3.2), or the manifold M, defined by 

and for which we have assumed 
~ & u ( z )  2 G,(4, (3.9) 

where UL2 is the lower envelope of (3.8). A geometrical interpretation of this inequality 
is given in figure 2 (c). 

For this case we may evaluate (3.5) at [ = Cl 2 and thus we have 

C l ~ ' ( C l ) / ~ ( C l )  = - 1 .  

The substitution of the values of s(cl), s'(Cl) from (2.10) then gives <J1 - Cl = 1, and 
consequently 

(3.10) 

When (3.4) is evaluated at c1 the expression for the boundary layer Reynolds number 
becomes 

c1 = &, S(CJ = 4, s(<) = - l l ~ ( C 1 )  = - 1 < >  4. c 4" 

From (3.10) we have s(1) = $, and (3.7) then becomes 

(3.11) 

(3.12) 

The form of s is unconstrained for [ < 8, except for 

1 2  s(<) 2 1-y, [ 6  4 (3.13) 

and the function $ is unconstrained except for the previously-stated boundary con- 
ditions a t  [ = 0 and < = 1. As we shall see, these conditions ensure that the maximum 
value of (3.12) exists. Thus the last inequality in (3.2) is the only one which eliminates 
those profiles having zero shear beyond zb  and which provides new information. It 
remains, however, to establish the truth of (3.9). 

For z 9 v / d ,  UL2(z) is given by the value of (3.3) for which K is a maximum, and 
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therefore we proceed to maximize (3.12) with respect to (s, @). From (3.10) and (3.12) 
we see that the largest s is given by 

and therefore the largest value of (3.12) is 

(3.14) 

(3.15) 

This reduces the joint (k, s) variational problem to an ordinary one (with respect to 
@). By utilizing the mathematical results of Orr (1907)’ it is shown in appendix B 
that the numerical value of (3.15) is slightly larger than 

max K 2: 0.362. (3.16) 

The ‘optimal’ shear profile (3.14) associated with maxK has a discontinuity a t  
= 4 = 6, or at z = 2v/Kd, and therefore the ‘optimal’ velocity profile is 

Although the envelope U&) is determined by (3.16) and (3.3) for large z, the en- 
velope a t  small z is determined by the smallest value of 

IU”(0)I = (T/V)z,l ls’(0)I = d ~ - ~ ( K / 4 )  I~’(0)l .  

Since ls’(0)I < 1 and K 6 0.37 we then have J Uz2(0)l < 0 . 0 9 ~ ~ v - ~ .  

4. Comparison with experiment and the significance of max K 

In  appendix A we show that the first of our two inequalities (2.3) agrees with 
experiment, and we now consider the second inequality (3.9). Since the envelope U& 
is less than the derivative of (3.17)’ it is sufficient to show that the latter is less than 
or equal to the observed U&). 

For small values of z we refer to Laufer’s (1954) pipe flow measurements which 
start at &z/v = 3 and which indicate a layer of constant shear extending up to 
d z / v  5.5. When this is compared with (3.17)’ and when the last paragraph 
of $ 3  is taken into account, we conclude that our second inequality is correct for 
d z / v  < 5.5. For larger values of z the observed Uk decreases slowly, whereas (3.17) 
has ft discontinuous decrease in slope, and therefore our inequality is also correct for 
dz/v  somewhat greater than 5.5. For still larger values of z we refer to the plot of 
U , ( z ) r f  as a function of logzd/v in figure 7 of the channel flow experiment of 
Laufer (1951). From the asymptotic slope of the log region of this data we obtain 
K = 0.35 as the approximate value of the von KBrman constant. Since this number is 
less than (3.16) (whichin turn islessthan rnax K )  we conclude that our second inequality 
agrees with Laufer’s data over the entire range of the law of the wall which occurs in 
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that  experiment. Although that range may not be sufficient to give the precise 
value of the asymptotic slope (i.e. von Kbrmbn’s constant) i t  is most relevant for 
assessing the validity of our second inequality since (3.6) is evaluated at zl ,  whereas 
the behaviour of the shear a t  very large ~ b / v  does not explicitly enter into our 
calculation. The significance of this remark appears below, where we consider other 
experimental determinations of von Kbrmbn’s constant. 

The law of the wall for flow over a flat plate (Kline et al. 1967) overlaps Laufer’s 
data provided the measured local value of r is used, whereas a slightly larger value 
( K  = 0-4) of von Kkmhn’s constant is obtained when Clauser’s indirect method of 
reducing the data is used. This has been criticized by Kline et al. (1967) and thus it 
appears that the best laboratory evidence for the higher vnlue of von Kbrmh’s  
constant comes from correlations of the bulk discharge in a pipe with the measured 
pressure gradient. These measurements give K = 0.407 (Townsend 1976, p. 149), and 
since this exceeds (3.16) the question arises as to whether or not our second inequality 
is correct. 

Although the author is not in a position to fully evaluate the reason for the small 
difference in the experimental values of K cited above, i t  seems that the Laufer and 
Kline et al. data introduce a bias in favour of the lower portion of the logarithmic 
region, whereas the bulk discharge value of K gives greater weight to  the upper 
portion of the log and defect layers which contribute most to the measured discharge. 
On the theoretical side a source of small error is due to the fact that  (3.16) is only a 
lower bound [appendix, equation (B 4)] and a sharper determination is in order. 
My estimate (not included herein) is that max K = 0.37 0.01, and i t  would be sur- 
prising if the precise calculation exceeded 0.4. A more satisfactory resolution of the 
small discrepancy in question is given by the following considerations, which also 
show how the present theory can be extended in order to incorporate more of the 
physics and to obtain a better bound for the entire profile. 

The problem of bounding Uh(z) from below is obviously equivalent to bounding 
from above the ‘ von KQrmbn function’ (see figure 2 ~ ) :  

dUo(z)7-* -l R(z) = ( ) . 
d In z74v-l 

From the previously cited measurements we know that this function decreases like 
z-l for z = 0,  and after reaching a minimum value R(z) then increases slowly in the 
transition region which lies between the viscous and log regions of the flow. No attempt 
to  model this physically important transition region has been made in our first order 
theory, but a next approximation should be sought in which the above mentioned 
slow variation of R(z) is incorporated. Such a programme would involve a relaxation 
of our K = constant constraint for z 2 zl, together with the introduction of a sufficient 
amount of physical information which will allow a closure (i.e. a finite value of max K ) .  
We may therefore regard the present theory as one in which the slowly varying terms 
([R‘(lJ/I?(c)) are neglected, and in which the computed max K is not the final upper 
bound for $?(a). Our present max K is identified with some weighted average & ( z )  
in the next approximation, this average being taken over the transition and log layers 
and being somewhat less than the asymptotic value of R(z). If this point of view be 
adopted then it is quite reasonable to test our second inequality by comparing (3.15) 
with the Laufer and Kline et al. measurements, rather than with the bulk discharge 
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determination of von Khrmdn’s constant. The fact that the latter quantity may 
exceed our present value of max K by a small amount does not, therefore, rule de- 
cisively against our second inequality, the present determination of max K being 
regarded only as a first approximation to the asymptotic g(z). 

There is a second way of modifying the foregoing theory so that it is in clear agree- 
ment with observations. We have shown that the first inequality (2.3) is in agreement 
with observations when two dimensional test perturbations V,(x, z )  are used. Equation 
(2.3) is therefore also correct for the wider class of all three dimensional test pertur- 
bations V,(x, y, z ) .  If such a relaxation of the first inequality is also used in the state- 
ment of the second inequality (3.8) then a smaller value of the minimum possible 
boundary layer Reynolds number will occur and, according to (3.11), a larger value 
of max K.  The quantitative effect of such a modification of our theory may be ob- 
tained from Busse’s (1969) generalization of Orr’s calculation for Poiseuille flow. 
When three dimensional perturbations are admitted, Busse found that the minimum 
Reynolds number was smaller by a factor of 50/88 than the value given by (A 3) 
(and the minimizing V, consists of rolls whose axis are parallel to the flow). From 
(3.11) we see that the modification in question will increase our max K by a factor of 
(88/50)f (approximately), thereby giving a max K N 0.49 which is definitely larger 
than the observed va1ues.t There are, moreover, other attractive features in such a 
modification of our theory, not the least of which is the possibility of incorporating 
more of the physics of the three dimensional turbulence as constraints on the Vc(x, y, 2). 
We conclude that our second inequality is, or can readily be modified to be, in agree- 
ment with observations and that max K is close to the observed value. 

Since the U ( z )  profile having largest K has the smallest discharge (for a given T), 
this conclusion lends support to Malkus’ hypothesis (see $1) that the realized flow 
has the least discharge, subject to certain constraints. 

5. The inequalities applied to the thermal convection problem 
Can the same procedure, with only minor and obvious changes in the formalism, 

be applied to other one-dimensional turbulent problems, such as the problem of 
turbulent thermal convection between two differentially heated horizontal plates 
(see (1.6) for the notation and references)? Figure 2 ( b )  is a sketch of the horizontally 
averaged temperature gradient F‘(z) near the lower boundary z = 0 when the Nusselt 
number D(k2v/gaF)-i is very large, where 

P = -kT’(O) (5.1) 

is the total vertical flux of heat between the two boundaries having a temperature 
difference 2AT+. - 

For any profile T’(z) the thermal boundary layer depth zb(F’) and the ‘comparison’ 

t A referee of an earlier draft has remarked that our first inequality (2.3) is equally correct 
if the left-hand side be adjusted downward by changing the number ‘one’ to (say) 5/11. But 
this modification would reduce (3.16) by a factor of (5/11)* and thereby bring the second in- 
equality into even greater conflict with observations. Moreover, this kind of parametric adjust- 
ment (as contrasted with the conceptual adjustments suggested above) seems quite inappropriate, 
since the prediction of K provides the only quantitative test of the present theory. The intro- 
duction of empirical coefficients would obliterate any heuristic value of the inequalities, such 
as is illustrated in 8 5. 



Inequalities for turbulent transport 525 

profile Pk-l( 1 - z / zb )  in figure 2 ( 6 )  are constructed in strict analogy with the corres- 
ponding shear profiles in figure 2 (a) ,  and thus we have 

The observed values of pi, zbo are connected by a similar inequality. 
The assumption pertaining to the energetics of the (thermal) boundary layer states 

that there exists a two dimensional perturbation in 0 < z < ZbO which releases as 
much ‘energy’ from the mean (temperature) field as that perturbation dissipates, 
and the precise meaning of this is as follows. In  (1.6) $0 is replaced by zbo, V, by 
Vc(x, z) ,  and To by the thermal test perturbation q ( x ,  z) .  The two resulting integrals 
then provide a functional inequality for the observed ph(z), in which V,,< serve as 
‘ dummy variables ’. When the subscripts ‘ zero ’ are discarded the two integrals : 

together with the boundary conditions stated below, define a manifold MI of profiles 
p’(z) to which ph(z) belongs. 

The no-slip boundary condition w, = 0 = u, is applied at  z = 0, and a t  z = zb we 
take w, to be a maximum as in $ 3 .  The isothermal boundary condition = 0 is 
applied at  z = 0, and at  z = zb  we take % to be a maximum (aT,/az = 0). In $ 3  we 
used w,u, < 0 as a side condition to simplify the formal development (but in retro- 
spect this restriction can be removed without changing the results). Likewise, we 
will now assume that w c q  increases monotonically from zero to z b ,  in order to simplify 
the development of the following inequalities. 

- 

- 

When (5.3) is made non-dimensional by using 

k -  
s(6) = -- F T’(z), (5.4) 

and when the non-dimensional version of the boundary conditions are introduced we 
obtain 
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The non-dimensional temperature gradient (5.4) satisfies s(0) = 1, and (5.2) gives 
s(5) 2 1 - 5. If cl = zl/zb denotes the non-dimensional tangent point (figure 2 b )  then 
s(cl) = 1 -cl, and ~ ' ( 5 ~ )  = - 1.  The counterpart of (1.4) is the assumption that s(5) 
decreases monotonicallyt from z = 0 to z = D/2. These constraints on s are summarized 

by 
1 - 5 <  s(5) < 1, (5.8) 

and 
(5.9) 

(5.9a) 

In  order to verify the fundamental assumption that (5.3) can be satisfied (when 
p' = and zb = zbo) it is sufficient to show that the observed value of zt0gaF/k2v 
exceeds the right-hand side of (5.5) [for some permissable ($, O)] when s(6) is replaced 
by 1 - 5 < so(c). This verification appears in $6. 

Equations (5.5)-(5.9) complete the description of the manifold Nl of F'(z), whose 
lower envelope will be denoted by FLl(z). For any member, the surface temperature 
AT+ relative to the temperature at  z = 0 1 2 ,  is given by 

where the large Nusselt number approximation has been made in the last term. A 
lower-bound on the realized surface temperature in iffl is now computed by minimizing 
(5.10). 

The mathematics necessary for this calculation is partially supplied by the extensive 
literature on the Rayleigh stability problem for a uniform temperature gradient 
between two rigid boundaries a t  5 = 0 and 6 = 2, with 5 = 1 being the plane of sym- 
metry for the temperature 8 and streamline $ eigenfunctions. Thus we know that the 
functions which 

are the rigid-rigid Rayleigh eigenfunctions: $ = $R, 8 = OI2.  The minimum critical 
Rayleigh number equals 1708, based on the separation of the two rigid boundaries, 
and equals 1708/24 if the distance to the midplane 5 = 1 is used as the length scale. 
Thus we have 

(5.11) 

In view of the symmetry of $n,8R this minimum also applies for the case of our 
boundary conditions (5.7) at 5 = 1, and the corresponding optimizing (q5,O) are there- 
fore given by the ' bottom half' of the respective Rayleigh eigenfunctions. These have 

t This is not necessarily the case a t  moderate Nusselt number where inversions have been 
reported in the literature. 
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been tabulated in Chandra5ekha.r (1961), and have been used in all the numerical 
calculations cited below. 

We will also make use of the following lemma, the proof of which appears in appendix 
D. If q increases monotonically with 5, and if 6 ( [ )  decreases monotonically [cf. 
( 5 . 9 ~ )  and the last equation in (5.7)J then 

(5.12) 

Since s(6) G 1 a lower bound on (5 .5 )  is 

and when this bound on Zb is inserted into (5.2), we obtain a broken straight line 
which is a lower bound for all the - p ( z )  profiles including p&). Furthermore, the 
elimination of zb  from (5.5) and (5.10) gives 

where s(5) 2 0, s(6) 2 (1-5)  have been used in the last line, and (5.11) and (5.12) 
have been used in the preceding line. This bound on the surface temperature can be 
written as 

(5.15) 

where C is a conventionally measured non-dimensional heat flux. 
We now proceed to the second (or ‘similarity’) inequality, which is introduced in 

strict correspondence with the shear flow problem (see $3) .  
The (law of the wall’ for the thermal problem asserts that po(z) approaches a func- 

tion pow(z) which is independent of D + 00, provided z and F are held constant. 
This asymptotic pm is then assumed to approach zero with increasing z according 
to the power law 2-8, where the exponent /3 is undetermined. A bound on /3 arises 
from the following argument which shows that the internal energy function 

(5.16) 

must diverge as z -+ 00. 

Let us view the limiting case D = 00 of the parallel plate convection problem from 
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the point of view of an initial value problem, in which a steady heat flux F is suddenly 
applied at  time t = 0 to the lower boundary of a semi-infinite fluid having To@, t )  = 0 
as its initial temperature. For t > 0 the conservation of energy requires 

s," To@, t )  dz = Ft. (5.17) 

We assume that as time increases a statistically steady Fo(z, t) = F,,(z) is established 
at all$nite z, with the internal energy (5.17) appearing at successively greater heights 
as t increases. Consistency between (5.16) and (5.17) then requires that Q, must 
increase with increasing z. 

< 1.  Therefore -zTk,/T,, < 1 
for large z, and the asymptote to Q, may be bounded by a logarithmic curve. In 
order to enforce this bound we shall constrain the profiles of 

It then follows that the exponent in T,,az-fl is 

to satisfy (5.5)-(5.9a) and 

-- - -1, for z > zr; ZQ"(Z) 

SZl(z) 

(5.18) 

(5.19) 

z[ > Z b ( p ' ) ,  or z b  2 z[ > 21, or zl(p') 2 zl > 0; (5.20) 

where zt denotes the height at which the logarithmic region for SZ starts. The physical 
content of this procedure appears with the assumption that the envelope Qiz, for 
each of the three inequalities in (5.20), bounds C2; from below. 

It is readily shown, as was the case in $3, that the first two inequalities in (5.20) 
have envelopes which are identical to the envelope for M,, and in these cases the above 
mentioned assumption is trivially correct. The only new information in (5.19) and 
(5.20) is supplied by the last inequality, which then gives us the manifold 

[Ml and 

- - 1, z > z,, 
(5.21) 

21 < z1(P) ;  (5.22) 

and the statement of the physical assumption is 

Q&) < a&). (5.22 a) 

In order to determine the envelope Qi2 we first write the solution of the differential 
equation (5.21) in the form 

IC2' 'KF'lnz k2V -f (9) +constant, 
~ ( z )  = (:) (9) (5.23) 

where K, is a non-dimensional constant of integration. The corresponding temperature 
field is the derivative of this, and the temperature gradient, 

(5.24) 
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can be written in the non-dimensional form 

(5.25) 

According to (5.22) this relation and its derivative are valid a t  

Cl = zl/zb 

a t  which point we also have s(Cl) = 1 - Cl, and s’(C1) = - 1. By substituting the latter 
into (5.25), or s’(C)/s = - 2/C, we obtain Cl = 6, s(Cl) = 9, and 

for 5 2 6. 4 
s(C) = 2752 

Equations (5.25)-(5.26) then give 

and when z b  is eliminated by means of (5.5) we obtain 

(5.26) 

(5.27) 

(5.28) 

The maximum value of this with respect to s, 8, $ determines the minimum value of 
R‘ a t  large z, and also determines the asymptotic slope of the envelope Re&) of the 
manifold. 

To compute the maximum value of KT we note that 

\ a  

and therefore (5.28) becomes 

(5.29) 

(5.30) 

From (5.11) and (5.12) it follows that 

where ($R, O R )  supply the optimizing eigenfunctions for this rigorous, but crude, 
upper bound on KT. A much sharper value can be obtained by noting that the middle 
term (containing smax) in (5.30) is rather insensitive to permitted variations in &I3, 
and therefore ($R, 13,) may be used in evaluating the middle term. The following term 
in (5.30) is, of course, maximized by (gR ,  Oft). Thus a ‘good’ approximation to (5.30) 
is obtained by merely substituting the Rayleigh eigenfunctions, and the numerical 
result is 

- 

max K,, N 27 (0.45)* (2)’ = 0.44. 
4 1708 (5.31) 

18 FLM 91 
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The ' optimal ' and the optimal internal energy function (5.18) which is associated 
with this K ,  is computed as follows. The boundary layer width (5.27) is given by 

k2v -4 27 .h 
Z b ( G P )  =(q) = 3 * 9  

and the height z = 2zJ3 at which the 'log layer' begins is given by 

xl(%)-' = 2.6. 

When (5.29) is used in (5.10) the surface temperature becomes 

and the use of ( 5 . 3 1 ~ )  then gives 
AT+ = gFzb/k 

( 5 . 3 1 ~ )  

(6.31 b)  

( 5 . 3 1 ~ )  

gaAT&/[gaFsk-l]f = 3*47(v/k)). (5.31d) 

The 'optimal' temperature field then decreases linearly until x = zl, is reached, at 
which height p(z) is given by 

(5.31 e) T(zl)/AT4 = 1 - Fz,/kAT+ = 1 - 6 x = ). 
At this and larger z the temperature follows the z-l law: 

In  order to compare the foregoing profile with subsequently cited experiments in 
air (vlk = 0.72) we will write the above results in terms of the new non-dimensional 
variables 

z* = z(k3/gaF)-d ( 5 . 3 2 ~ )  

T*(z*) = gaF(z)/[(gaF)3k-l]) (5.323) 

in which case the 'optimal' internal energy field may be expressed as: 

(5.33) 

3-22, - 4 / 2 ,  Z* c 2.4 loz* T,(x) dx = 
(1.92 In ( 4 2 . 4 )  + 4.8, z* > 2.4 

(v/k = 0.72). 

For large z* our theory requires the observed internal energy function to  be larger 
than (5.33). 

A t  small values of z the envelope is less than that which is obtained from (5.33), 
and the minimum possible surface temperature is smaller than (5.31d). To obtain 
min AT& from (5.13) we first note that 

1-6, c < t ,  
{4/27C2, C > 6, s(C) 2 Smin = 

in consequence of which we have 
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When this inequality is used in (5.14) we get 

and in terms of the C defined by (5.15) this bound is equivalent to 

C < 0.115. 

531 

(5.34) 

(5 .35)  

We are now in a position to verify the main assumption ( 5 . 2 2 ~ ) .  

6. Comparison with experiment and summary 
The temperature in the air above a heated horizontal plate has been measured by 

Townsend (1959). The abscissa of his figure 2 is ( 5 . 3 2 ~ )  and the ordinate reduces to 
(5 .323)  if one makes a Boussinesq extrapolation of the experimental results. By 
smoothing and differentiating the experimental T* data we obtained a curve like 
our figure 2b,  and by drawing the tangent line the boundary layer thickness was 
found to be (slightly) larger than zbo(gaF/k2v)* = 5.4. A similar value of 

Zbo(pF/k2v)* = 5-3  

was obtained from the measurements of Deardorff & Willis (1967) ,  even though the 
Nusselt number in this experiment was only thirty. Our inequality [cf. (5 .3 ) ]  per- 
taining to the energetics of the thermal boundary layer can be immediately verified 
by showing that these numbers, or z$(gaF/k2v) 21 (5.3)4 exceed the value of the 
right-hand side of (5.5) for some permissible ($ ,B,  s). Accordingly, we substituted 
s = 1 - 5 and the Rayleigh functions $R, OR in (5.5), obtaining a value 4 ~ 5 ~  which is 
definitely less than the experimental values. Thus we conclude that the inequality 
is correct for the thermal problem [as well as being correct for the shear flow problem 
(see § 4 ) ] .  This inequality for the thermal problem implies that (5 .15)  must be a bound 
for the heat flux. 

The main quantitative result for the thermal problem is the upper bound K ,  = 0.44 
(5 .31)  for the 2-1 law (5.31 f ) .  When air is the working medium, and when (5 .22a ,  b )  
are used, the theoretical 2-l law becomes T,(z,) = 1 . 9 ~ ; ~ .  This is a fair lower bound 
for Townsends experiment since the best fit is T* = 2 . 6 2 ~ ~  + 0.06 for z* > 8, and since 
T* = 2 . 0 2 ~ ~  + 0.07 is a possible fit for z* > 10. However, Deardorff & Willis (1967) 
have questioned the validity of the z-l law. 

We also note that (5 .31d)  is close to the ordinate a t  z* = 0 on Townsend’s measured 
temperature profile, and that our bound (5 .34)  on the surface temperature is de- 
finitely less than the measured value. We therefore conclude that the key inequality 
( 5 . 2 2 ~ )  is correct for small z as well as for large z .  For the intermediate values of z we 
have integrated Townsend’s T,, since this eliminates some of the scatter, and com- 
pared the result with (5 .33 ) .  The observed no agrees with (5 .33)  up to z* = 1.5, at 
which point no begins to exceed our ‘optimal’ n. We therefore conclude that the 
similarity inequality is correct for all values of z in the wall region. 

It appears from the previous paragraph that the maximum value of K ,  is close to 
Townsend’s observed value, and the maximum value of von KkmiLn’s constant is 
also close to the observed value (see $ 4 ) .  Although the reason for this close agreement 

Ia-2 
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is unknown, it does suggest that some general optimal principle is applicable to the 
fully turbulent regimes. We also lack a theoretical explanation for our inequality 
pertaining to the energetics of the boundary Iayer, and the value of the foregoing 
work would be greatly enhanced if a more satisfactory physical basis for the in- 
equalities could be found. The question also arises as to whether there are additional 
inequalities which could be incorporated, so as to give a better lower bound for the 
entire profiles. 

In  the absence of answers to these questions, our formalism might be tested and 
generalized by applying it to other ‘ one-dimensional ’ turbulence problems, such as 
‘ double-diffusive convection ’ (Linden & Shirtcliffe 1978), between two very deep 
fluids containing different concentrations of two solutes. The problem is to compute 
the two fluxes across the self-adjusting interface which separates the two deep 
layers. 

I would like to thank Prof. Klaus Hasselmann for inviting me to the Max-Planck- 
Institut fiir Meteorologie. Part of this work was carried out at that institution and 
also at  the Geophysical Fluid Dynamics Summer Program under contract with the 
Office of Naval Research. Thanks are also due to Dr Colin Shen for the numerical 
ca.lculation of the Orr Eigenfunctions. 

Appendix A. The Orr variational problem and verification of (2.3) 
We must show that the right-hand side of (2.3) can be made less than unity for some 

permissible V,, where the boundary layer depth zbo is obtained from the observed Uh, 
by means of the tangent line construction in figure 2 ( b ) .  Such a construction was made 
on the experimental curve in figure 26 of Laufer (1954), which is a plot of directly 
measured shear (and Reynolds stress) in the neighbourhood of the wall of a pipe 
for which the overall Reynolds number was 500000. The boundary layer depth so 
obtained is given by 

When (2.1) is substituted into 
is used we obtain the expression 

r r i  

(2.3) and when the non-dimensionalization in (2.8) 

for the right-hand side of (2.3), and thus we must show that the term in brackets can 
be made less than (22)2 by using some permissible @. For this purpose it is necessary 
to discuss the eigenfunctions which occur in Orr’s investigation of the ‘absolute’ 
stability of laminar Poiseuille flow. 

For a parabolic flow having maximum shear B in a channel of height 2a, Orr (also 
see Lin 1955) found a minimum Reynolds number Ba2/v = 2 x 88. The optimizing 
stream-function is symmetric about the channel centre, in consequence of which we 
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may express the energy integrals in terms of the half range &D [cf. (1.5)], and thus 
Orr’s result can be written as 

1- 
(v2$)2 d6 

$&&1-6)d5 

optimal $ = $,,, = Re Yo(5) exp (it?[). 

= 2 x 8 8  (A 3) 

(A 4) 

(A 5 )  

J O  
1- 

min 

I n  
$(& 0) = $&, 0) = 0; $ is symmetric about 5 = 1 

Since the lower half (0 < 6 < 1) of Om’s eigenfunction in a channel satisfies our 
boundary conditions ( 2 . 1 2 )  and ( 2 . 1 3 ) ,  it is permissible to use this eigenfunction in 
(A 2 )  for 6 2 1. For 5 < 1 we will choose a function which satisfies V4@ = 0, which 
vanishes as 5 + co, and which is such that $[ is continuous a t  6 = 1. The biharmonic 
solution for 6 2 1 is readily found to be 

$ = ReYo(1)exp(i15){exp[-l(5- 1)]+1(6-- l)exp[-Z(6- I)]}. (A 6) 

For D/xb0 + co the bracketed term in (A 2 )  then simplifies to 

where Y: is the complex conjugate of Yo and Im denotes imaginary part. We note 
that if the second term in the numerator is ignored then (A 7)  is the same as (A 3 ) ,  
the value of which is definitely less than 222.  Therefore our inequality wiIl be estab- 
lished if we can show that the contribution of the ignored term 2Z1Yo( 1) 12 is sufficiently 
small. 

Since Orr did not explicitly evaluate Yo, we have performed the calculation [correct- 
ing an obvious typographical error in one of the signs in Orr’s (67)], using 18 terms in 
the power series expansion for $ and Orr’s value of 1 = (4*4)4. The eigenfunction and 
its derivatives are plotted in figures 4 (a, b); with the values of Y “  near the endpoints 
(0’1) being excluded because they are not (computationally) reliable. When our 
approximation to was substituted in (A 3) the result obtained was 186, with the 
error 186- 2 ( 8 8 )  being attributed to the endpoint error. From these eigenfunctions we 
obtained 211 Y : ( 1 ) ]  = 2(4.4):, as compared with a value of 75 for the first term in the 
numerator of (A 7) .  Therefore the expression in (A 7) equals 187 and we conclude 
that (A 2 )  is definitely less than unity for some $. This completes the verification of 
the main assumption ( 2 . 3 ) .  

It is necessary to consider some further aspects of the minimum value of the 
functional 

Jn J =  ... 

for various values of ~ ( 5 ) .  For 5 = 1 - 6 Orr’s work assures us that (A 3) is the 
minimum value of (A 8) for symmetric functions (which satisfy a no slip boundary 
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condition a t  C =  2)) and we will show that our no stress boundary condition 
(2.13) at 5 = 1 gives the same minimum value for (A 8). 

For any s, the function which minimizes (A 8) satisfies the Euler equation 

V V  + Js(5) &g + BJs‘((s) $6 = 0 (A 

and the contribution of the free endpoint 5 = 1 to the variation of (A 8) is 

If the stress (2.13) vanishes a t  5 = 1 then either the vertical velocity vanishes 

a t  5 = 1 or 

and the latter condition will lead to a smaller minimum value of J than the former 
[see p. 131 of Orr (1907)l. With the boundary condition (A 10) the first term on the 
right of (A 9) vanishes. The last term in (A 9) vanishes for the case s = 1 - 6, and 
(A 9) then reduces to 0 = S~(& 1)@ssc(5, 1) .  Since @(& 1 )  =k 0, the single condition 
(A 10) implies that 

= o  (A 11) 
a34(5, 1 )  

ac3 
is the second boundary condition for (A 8) to have a minimum when s = 1 - 5. Now 
we note that (A 10) and (A 11)  are a,lso satisfied by Orr’s symmetric eigenfunction 
for the interval 0 < 5 < 2, and thus we conclude that the minimum J for our problem 
is the same as the minimum in Om’s problem, i.e. 

= 2 x 88, J O  min n r  

w - 7  0) = 0 = $ q E ,  0)) 
$ g ( L  1) = 0 (only). 

Orr also found a minimum Reynolds number of 44.3 (based on the shear and the 
half channel width) for the absolute stability of laminar Couette flow. This corres- 
ponds to s = 1 with rigid boundary conditions at 5 = (0,2), and thus we have the 
formal relation 

0 = + ( L O )  = &(5,0), 

0 = +(5, 2) =1I‘&f;, 2). 

(5 = 0,5 = 1)) 

The optimizing @ for this problem has ‘mirror symmetry’ a,bout the origin 
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where @((, {) has its maximum amplitude. This means that if A = 1 - [then 
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@( - ‘5, - 4 = @(L A).  
Moreover the Reynolds stress $t+c is a maximum a t  5 = 1, whereas for our boundary 
condition (2.13) the stress is zero. This suggests that  the minimum of J for s = 1 
and for our boundary conditions is greater than Orr’s value, or 

0 = 9% 0) = @&) 0)) 

$&, 1) = 0. 
This may be proven indirectly, by tentatively assuming that the inequality in (A 14) 
is incorrect, and by then showing that this leads to a contradiction (with Orr’s result). 
Accordingly we assume that the optimal $ for the left-hand side of (A 14) is such 
that the value of the latter is less than 44.3. Since this $ is only defined for the inter- 
val s < 1, we may reflect @ about ( = 0, { = 1, so as to obtain a function which is 
defined for the interval 0 < { < 2. The latter function and its first derivative 

are continuous at { = 1, but the vorticity has a finite discontinuity. The piecewise 
evaluation of the integrals on the left side of (A 13) have a ratio which is less than 
44.3, according to the tentative assumption made above. This function (with con- 
tinuous can now be smoothed a t  s = 1 in such a way as to eliminate the vorticity 
discontinuity, and without significant change in @ or ~c outside the smoothing region. 
It follows that the smoothed function still yields a value of 

$+&5 1 )  = 0 

which is less than 44-3, and this is in contradiction with the minimum (A 13) obtained 
by Orr. Therefore the tentative assumption made above is false, and the inequality 
stated in (A 14) is correct. 

These results can be used in connexion with the minimum discharge relation (2.15). 
Since s < 1 the last term in (2.15) is greater than the square root of (A 14)) and the 

preceding term in (2.15) is greater than (1  - 5)  d{ = 9 ,  because s 2 1 - g. Therefore 

the minimum in (2.15) exists, and &o(~bD)-l > $(44.3)4. A better estimate of the 
minimum drag coefficient can be obtained by using s = 1 - 5 for both terms in (2.15) 
(but this does not give the exact minimum). We have not pursued this mathematical 
problem because the observed drag coefficient is not a constant. 

l o 1  

Appendix B. Calculation of von KBrmBn’s constant (3.16) 

by the following considerations. 
Equation (A 14) implies that (3.15) ‘exists’, and the numerical value is computed 

Let Ku denote the maximum value of K obtained from (3.12) when 

45) = su(0 = 1 - Y. 
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0 0.5 I .o 

FIQURE 3. The discontinuous curve which ire labelled (d)  for 5 < 4 and labelled ( b )  for 5 > 4 
is the curve a ( [ )  which gives the maximum value of von KBrmBn’s constant in appendix B. 
The continuous curve labelled ( b )  and the straight line labelled (c) are used for comparison 
purposes (see text). 

Z I Z h  = 5 

This line is drawn in figure 3 together with the curves sb, sc, sd, the latter being the one 
which appears in (3.15). From (A 12) we have 

= 0.302 K ,  = - 4 
(2  x 88)) 

with @err being the optimizing function. Obviously (K,/4)2 must be less than (3.15), 
and we turn next to the smooth curve denoted by ( b )  in figure 3. The specific way in 
which this sb was constructed is not important for the present discussion, suffice it 
to say that sb(0) = 0 = s i  and sb joins smoothly on to s = 1/45 at 5 = 8. If Kb denotes 
the value of K obtained by substituting sb and $err in (3.12) then the computed 
integrals give 

and it is obvious that this must also be less than (3.15). 

Kb = 0.325 (B 2) 

Now consider the right-hand side of (3.15), or 
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FIQURE 4. (a) The amplitude I Y I and the (negative) phase angle (rad) of the Orr eigenfunction 
for a parabolic velocity profile. ( b )  The corresponding values of the ‘Reynolds stress’ Im Y*Y‘ 
and the viscous dissipation for the Orr eigenfunctions. 

If we assume a small change in the form of the optimal $[Ic (cf. figure 4) as s increases 
from 1 - 5 to sd(f;) then the $ which maximizes the above expression is the same as 
the $ which maximizes the bracketed term. Therefore $ = $Orr should give a good 
first approximation to (3.15), and when the integration is carried out we obtain 

K, = 0.362. (B 3) 

This number is a lower bound to the exact value of (3.15), and we shall now calcu- 
late a (crude) upper bound. The curve s, = 1 - 5+ 9 in figure 3 obviously exceeds the 
maximum possible s = sd a t  all values of 5 and consequently (3.15) gives 

maxK < 0.52, 

where (A 12) and (A 14) have been used. Combining this with (B 3) gives 

0.362 c max K < 0-52, (B 4) 
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where the second inequality means that the last number is a very crude upper bound 
and that the true value of max K probably lies very much closer to 0.362 than to 0.52. 
The author’s guess is that max K = 0.37 k 0-01. 

Appendix C. The Orr variational problem for the observed turbulent 
boundary layer 

The purpose of this note is to document the assertion made a t  the end of the second 
paragraph of 8 2, namely, that Uo(z) is unstable (in the sense of Om) to two-dimensional 
perturbations when the Reynolds number d D / v  -+ 00. The following proof is based 
on the fact that above a certain d z / v  N 20 the observed dUo/dlnz decreases mono- 
tonically as the asymptotic value is approached at large dz/v. Thus in this range we 
have 

where KO is the observed value of von K k m h ’ s  constant. 
Let $(x, z )  be an arbitrary stream function which satisfies the no-slip conditions at 

z = 0 and which is vanishingly small for z d / v  -+ co. For this test function the ratio of 
dissipation to energy release is 

where h is any number greater than 20. The observed Uo is unstable in the sense of 
Orr if there exists a $ which makes the left-hand side of (C 2) less than unity. For 
z = h v d  the quantity U&) 2 U ; ( h v / d )  2 .r/hvK, decreases monotonically, and there- 
fore is smaller than 

Now it is obvious that a permissible I++ = Re e@$(c) can be chosen such that the brack- 
eted term is a positive number. With this @ fixed we then choose h sufficiently large 
so as to make (C 3) less than unity. Therefore the observed mean flow is indeed un- 
stable (in the sense of Orr) to two-dimensional perturbations. 
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Appendix D. 
In  order to prove the inequality (5.12) we let 

- 
$66 = a(1-  G(C))) 

where a > 0, and G(C) decreases monotonically from G(0) = 1 to G(1) = 0 [cf. (5.7)]. 
Since s(<) is assumed to be monotonic decreasing, the function 

- 1  s(5) 
H ( 5 )  = 

having zero average, also decreases monotonically a8 5 increases. Therefore H(C) 2 0 
for 6 < Cp and H(C) < 0 for 5 2 Cp, where Cp is some value between zero and unity. 
Consequently 

and it then follows that 

Both terms on the left-hand side of this relation are positive because G < 1, and 
therefore 

or 

or 
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